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On the basis of [1] this note examines nonlinear electromagnetic
phenomena in a dense plasma brought about by the variation in its
electrical conductivity as the electrical field changes.

It is well known that the electrical conductivity depends on the
electric field strength due to the following causes. The electrons in
moving in the electric field receive energy from the field which may
be considerable over the free path length. However it is difficult for
this energy to be transferred to the heavy particles. In monatomic
gases the energy exchange between electrons and heavy particles
comes about basically as a result of elastic collisions. Thus a notice-
able difference in electron and ion temperature, determined by the
electron energy balance taking radiation losses into account, turns
out to be possible even for relatively weak electric fields. In molecu=
lar gases, on the other hand, the fundamental energy exchange mech-
anism is the excitation of the rotational and oscillatory degrees of
freedom of the molecules. Thus the electron energy in these gases is
dissipated relatively easily, and the electron temperature is not ob-
served to be noticeably higher than the atomic temperature.

The concept of the characteristic "plasma field” Epis introduced
© in [2], which is determined for an isotropic plasma by the relation

E,= V 5kTme s (0F + vo?) -

Here k is the Boltzmann constant, T is the plasma temperature
in the absence of a field, m and e are the electronic charge and mass,
& is the mean fraction of energy transferred to a heavy particle by an
electron on collision, w is the frequency of field variation, v is the
electron-ion collision frequency in the absence of a field.

In weak electromagnetic fields (E « Ep) the plasma maintains
thermodynamic equilibrium, and the electrical conductivity of the
plasma is independent of the field. In strong electric fields (E > Ep)
there is a sharp difference of electron temperature and the voltage-
current characteristics of the plasma become nonlinear.

The question of nonequilibrium electrical conductivity has been
fairly fully studied [3-5] as regards monatomic gas plasmas like argon
and potassium mixtures, It was shown in [3] that for the plasmas which
were considered the dependence of the electrical conductivity on the
electric field with no magnetic field present could be satisfactorily
described by a power function of the absolute current density, i.e.,

o = ¢ {j|¥, where c is a function of the atomic temperature. This
function has also been confirmed experimentally for an argon -potas-
sium plasma for a temperature of the order of 0.2 eV and a pressure
of the order of 1 atm. [3].

In the following we consider electromagnetic phenomena in a
dense plasma with an electrical conductivity of the type ¢ = ¢ [j|¥
when it is in motion in a traveling magnetic field. It is assumed that

the plasma parameters and limits of variation of the independent quan-

tities (j, Tg) are such that the function ¢ = ¢ }j{¥ is stable [4]. In
addition the plasma is taken as having the properties of an ideal in-
compressible fluid. These last assumptions together with the assump-
tion that the gradients of static pressure and pondermotive forces are
only in the direction of plasma motion allow us to commence from
the equations of electrodynamics.

1. We shall write the electromagnetic field equa-
tions in the form of the induction equation

rotrotA;uw(—%—{—uxrotA), (1.1)
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We introduce the dimensionless quantities
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Here A, is the length of a characteristic wave, u,
is the phase velocity of this wave for a characteristic
frequency f,
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Equation (1.1) takes the form
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We have in mind configurations having cylindrical
symmetry. For such configurations we obtain from
(1.4)
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It is assumed here that due to symmetry the vec-
tor-potential has an azimuthal component only, the
upper index x being discarded.

In connection with problems considered below it is
assumed that the boundary conditions have the form

Ale, =1 (z—1), Al = g2 (z—1),

where, in a particular case, (¢4, @) may be under-
stood as traveling waves of the type sin (x — t}. We
shall thus look for solutions of Eq. (1.5) in a class
of functions in which the variables x and t appears
only in the combination 7= x — t. We may then write
(1.5) as

924 s 1 4
at? dp p dp

8= (sign %—‘J—)n_l (signs)™1. (1.6)

(pA) = deos™ (3—‘:)11,

s=u—1,

Proceeding according to the general method of ob-
taining invariant-group solutions (H-solutions), we
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shall find the H-solutions of Eq. (1.6) in one-parame-
ter subgroups,
2. We replace Eq. (1.6) by the equivalent system
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T o =0, =7, 2t=p, u=4 2.1

Calculating the infinitesimal operators in a one-
parameter group we have
3

Sop (=124k=12,3. 2.2)

X =

Solving the defining equations gives the following
values for the coordinates of allowable operators:

El=(1—n)cer* + 1, &l = coul,
L= (2—n)cgud + a2 + —;3— ,
B2 = (1 —n)ez?, &2 = cu?2e,, - 2.3)

Here ¢ are arbitrary constants.,

Thus in accordance with (2. 3) the fundamental group

of system (2.1) is generated by the following linearly
independent infinitesimal operators:
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In order to find all possible fundamentally different
solutions of rank 1, we must find the optimum system
of first order subgroups. The operators correspond-
ing to this system and simultaneously satisfying the
condition for the existence of H-solutions are

X, X,, X, + X, X, + oX,. @.5)

Here and in what follows o and o, are arbitrary
parameters.
In addition to the operators (2.5) we shall, for con-

siderations which will become clear later on, consider

a somewhat different solution of rank 1 based on the
subgroup

Xy + Xy + o X, (2.6)

The H-solutions for the separate subgroups are given below with
the exception of one for which an H-solution could not be obtained.
These solutions are given for the variable =4 (the variables ul, u?
play an auxiliary part), The subgroup generated by the operator X is
denoted by H[X1.

1. H[X.). The H-solution for this subgroup satisfies the equation
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2. H[X,].

wd =y |z 4 ye |27 (2.8)

Here and elsewhere ¥, and y, are arbitrary constants.
3. H[Xz + (X_Xs]-
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3. We shall consider the applicability of the H-solutions which
have been obtained to boundary probiems.

1. The plasma moves along an infinitely long cylindrical tube
of radius p, in the direction of the x axis, the vector-potennal on the
tube has a ¢ component.

2. The plasma occupies a space the internal boundary of which
is a cylinder of radius p;, the plasma (or cylinder) moves in the direc-
tion of the x axis and the vector potential on the cylinder has a ¢
component.

3. The plasma moves in the direction of the x axis along a cylin-
drical channel of infinite length formed by two coaxial cylinders of
radii p; and py. The vector potential on both cylinders has a ¢ compo-
nent.

In all these cases it is assumed that the boundary conditions rep-
resent a traveling wave. The vector-potential in the plasma has to be
found.

It can be easily seen that none of the H-solutions which have been
obtained are suitable as an exact solution of these problems. However
an approximate solution may stili be obtained, and the H-solutions
(2.9)=(2.11) may be employed for this purpose.

The H-solutions considered above are valid for any interval axt,
and so the boundary conditions over separate intervals may be changed
o segments of the straight line Bixl and the parameters o; and oy, used
(up till now they have remained arbitrary) for matching the H-solutions
with the boundary conditions. The intervals in this procedure should
be small. We thus obtain a simple algorithm for the calculation.

The boundary conditions for H-solution (2, 9) should be written in
the form

3 — 3 — 1
¥le=0 =0, b Ingﬁzx °

From here

Seo(s8a)” [ ] B,
SZ(W[ T — P2 _?_Exwﬁ. (8.1)

Consequently (3.1) gives a solution of the first problem.
The boundary conditions for the H-solution (2.10) should have the
form

ub |, =Pt U, o= 0  (radiation condition).

From here it follows that forn > 2

deo (sB1)” n 3 1
ud :ﬁ-—%)_”) [($2)2-n91 - %] “+ ﬁlpl%' (3.2)

Consequently (3. 2) gives the solution of the second problem.
The boundary conditions for the H-solution (2.11) are

Bl =B, wl, =Bl
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Therefore
ud = M 2 2 2 .
= For — {PIf (@) —f (p2)] — 02 [f (23 — f (pa)] -
F P 1 ) — 1 (@)) + (o0 4 S,
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P —pt 1=W9192. (3.3)

We thus have the solution of the third problem,

Remembering that (3.1)=(3.3) give solutions for any of the in-
tervals, the parameters 8; and B, should be determined from the
boundary conditions in their initial form for each Ax*. For boundary
conditions of the traveling wave type the solutions given in (3.1)=(3, 3)
are periodic in the variable x% for even n these solutions have finite
discontinuities,
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